翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

symmetric spectrum : ウィキペディア英語版
symmetric spectrum
In algebraic topology, a symmetric spectrum ''X'' is a spectrum of pointed simplicial sets that comes with an action of the symmetric group \Sigma_n on X_n such that the composition of structure maps
:S^1 \wedge \dots \wedge S^1 \wedge X_n \to S^1 \wedge \dots \wedge S^1 \wedge X_ \to \dots \to S^1 \wedge X_ \to X_
is equivariant with respect to \Sigma_p \times \Sigma_n. A morphism between symmetric spectra is a morphism of spectra that is equivariant with respect to the actions of symmetric groups.
The technical advantage of the category \mathcalp^\Sigma of symmetric spectra is that it has a closed symmetric monoidal structure (with respect to smash product). It is also a simplicial model category. A symmetric ring spectrum is a monoid in \mathcalp^\Sigma; if the monoid is commutative, it's a commutative ring spectrum. The possibility of this definition of "ring spectrum" was one of motivations behind the category.
A similar technical goal is also achieved by May's theory of S-modules, a competing theory.
== References ==

*(Introduction to symmetric spectra I )
*M. Hovey, B. Shipley, and J. Smith, “Symmetric spectra”, Journal of the AMS 13 (1999), no. 1, 149 – 208.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「symmetric spectrum」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.